Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Pharmacol ; 178(3): 654-671, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33140839

RESUMO

BACKGROUND AND PURPOSE: Activation of type 2 imidazoline receptors has been shown to exhibit neuroprotective properties including anti-apoptotic and anti-inflammatory effects, suggesting a potential therapeutic value in Alzheimer's disease (AD). Here, we explored the effects of the imidazoline-2 ligand BU224 in a model of amyloidosis. EXPERIMENTAL APPROACH: Six-month-old female transgenic 5XFAD and wild-type (WT) mice were treated intraperitoneally with 5-mg·kg-1 BU224 or vehicle twice a day for 10 days. Behavioural tests were performed for cognitive functions and neuropathological changes were investigated by immunohistochemistry, Western blot, elisa and qPCR. Effects of BU224 on amyloid precursor protein (APP) processing, spine density and calcium imaging were analysed in brain organotypic cultures and N2a cells. KEY RESULTS: BU224 treatment attenuated spatial and perirhinal cortex-dependent recognition memory deficits in 5XFAD mice. Fear-conditioning testing revealed that BU224 also improved both associative learning and hippocampal- and amygdala-dependent memory in transgenic but not in WT mice. In the brain, BU224 reduced levels of the microglial marker Iba1 and pro-inflammatory cytokines IL-1ß and TNF-α and increased the expression of astrocytic marker GFAP in 5XFAD mice. These beneficial effects were not associated with changes in amyloid pathology, neuronal apoptosis, mitochondrial density, oxidative stress or autophagy markers. Interestingly, ex vivo and in vitro studies suggested that BU224 treatment increased the size of dendritic spines and induced a threefold reduction in amyloid-ß (Aß)-induced functional changes in NMDA receptors. CONCLUSION AND IMPLICATIONS: Sub-chronic treatment with BU224 restores memory and reduces inflammation in transgenic AD mice, at stages when animals display severe pathology.


Assuntos
Doença de Alzheimer , Imidazolinas , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides , Precursor de Proteína beta-Amiloide/genética , Animais , Cognição , Modelos Animais de Doenças , Feminino , Imidazóis , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
2.
Glia ; 68(5): 1017-1030, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31799735

RESUMO

The role of astrocytes in the progression of Alzheimer's disease (AD) remains poorly understood. We assessed the consequences of ablating astrocytic proliferation in 9 months old double transgenic APP23/GFAP-TK mice. Treatment of these mice with the antiviral agent ganciclovir conditionally ablates proliferating reactive astrocytes. The loss of proliferating astrocytes resulted in significantly increased levels of monomeric amyloid-ß (Aß) in brain homogenates, associated with reduced enzymatic degradation and clearance mechanisms. In addition, our data revealed exacerbated memory deficits in mice lacking proliferating astrocytes concomitant with decreased levels of synaptic markers and higher expression of pro-inflammatory cytokines. Our data suggest that loss of reactive astrocytes in AD aggravates amyloid pathology and memory loss, possibly via disruption of amyloid clearance and enhanced neuroinflammation.


Assuntos
Doença de Alzheimer/patologia , Astrócitos/patologia , Proliferação de Células/fisiologia , Memória Espacial/fisiologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Astrócitos/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Memória de Curto Prazo/fisiologia , Camundongos , Camundongos Transgênicos
3.
Neuropharmacology ; 145(Pt A): 59-74, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29630903

RESUMO

Environmental manipulations enhance neuroplasticity, with enrichment-induced cognitive improvements linked to increased expression of growth factors and enhanced hippocampal neurogenesis. Environmental enrichment (EE) is defined as the addition of social, physical and somatosensory stimulation into an animal's environment via larger group housing, extra objects and, often, running wheels. Previous studies from our laboratory report that physical activity is a potent memory enhancer but that long-term environmental stimulation can be as effective as exercise at ameliorating age-related memory decline. To assess the effects of EE, in the absence of exercise, rats were housed in continuous enriched conditions for 20 months and memory assessed at young, middle aged and aged timepoints. MRI scans were also performed at these timepoints to assess regional changes in grey matter and blood flow with age, and effects of EE upon these measures. Results show an age-related decline in recognition, spatial and working memory that was prevented by EE. A parallel reduction in ßNGF in hippocampus, and cell proliferation in the dentate gyrus, was prevented by EE. Furthermore, EE attenuated an age-related increase in apoptosis and expression of pro-inflammatory markers IL-1ß and CD68. Long-term EE induced region-specific changes in grey matter intensity and partially rescued age-related reductions in cerebral blood flow. This study demonstrates that sensory enrichment alone can ameliorate many features typical of the ageing brain, such as increases in apoptosis and pro-inflammatory markers. Furthermore, we provide novel data on enrichment-induced regional grey matter alterations and age-related changes in blood flow in the rat. This article is part of the Special Issue entitled "Neurobiology of Environmental Enrichment".


Assuntos
Envelhecimento Cognitivo/psicologia , Disfunção Cognitiva/prevenção & controle , Meio Ambiente , Animais , Ansiedade , Apoptose , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Encéfalo/patologia , Cognição , Envelhecimento Cognitivo/fisiologia , Disfunção Cognitiva/patologia , Disfunção Cognitiva/fisiopatologia , Resistência à Doença , Comportamento Exploratório , Abrigo para Animais , Inflamação/metabolismo , Inflamação/patologia , Inflamação/prevenção & controle , Masculino , Neurogênese , Distribuição Aleatória , Ratos Wistar , Reconhecimento Psicológico , Memória Espacial
4.
Neurosci Lett ; 685: 190-195, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30176342

RESUMO

Accumulating evidence has shown that the processing of the amyloid precursor protein (APP) and the formation of amyloid-ß are associated with the canonical Wnt/ ß-catenin signalling pathway. It was recently published that the drosophila homologue of APP is a conserved modulator of Wnt PCP signalling, suggesting a potential regulation of this pathway by APP. The aim of this study was to investigate the potential interaction of APP with the canonical Wnt pathway. APP overexpression in N2a cells led to alterations in the subcellular distribution of ß-catenin by physically binding to it, preventing its translocation to the nucleus and precluding the transcription of Wnt target genes. In addition, studies in APP transgenic mice and human Alzheimer's disease (AD) brain tissue showed the cellular co-localization of APP and ß-catenin and binding of both proteins, suggesting the formation physical complexes of APP and ß-catenin, yet not present in healthy controls. Furthermore, a reduction in the levels of nuclear ß-catenin was detected in AD brains compared to controls as well as a decrease in the expression of the inactive phosphorylated Glycogen synthase kinase 3 (GSK3) isoform. Therefore, these findings indicate a reciprocal regulation of Wnt/ ß-catenin signalling pathway and APP processing involving a physical interaction between APP and ß-catenin.


Assuntos
Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/metabolismo , Via de Sinalização Wnt/fisiologia , beta Catenina/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Núcleo Celular/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Camundongos , Fosforilação , Via de Sinalização Wnt/genética
5.
Proc Natl Acad Sci U S A ; 113(43): 12292-12297, 2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27791018

RESUMO

Current therapies for Alzheimer's disease (AD) are symptomatic and do not target the underlying Aß pathology and other important hallmarks including neuronal loss. PPARγ-coactivator-1α (PGC-1α) is a cofactor for transcription factors including the peroxisome proliferator-activated receptor-γ (PPARγ), and it is involved in the regulation of metabolic genes, oxidative phosphorylation, and mitochondrial biogenesis. We previously reported that PGC-1α also regulates the transcription of ß-APP cleaving enzyme (BACE1), the main enzyme involved in Aß generation, and its expression is decreased in AD patients. We aimed to explore the potential therapeutic effect of PGC-1α by generating a lentiviral vector to express human PGC-1α and target it by stereotaxic delivery to hippocampus and cortex of APP23 transgenic mice at the preclinical stage of the disease. Four months after injection, APP23 mice treated with hPGC-1α showed improved spatial and recognition memory concomitant with a significant reduction in Aß deposition, associated with a decrease in BACE1 expression. hPGC-1α overexpression attenuated the levels of proinflammatory cytokines and microglial activation. This effect was accompanied by a marked preservation of pyramidal neurons in the CA3 area and increased expression of neurotrophic factors. The neuroprotective effects were secondary to a reduction in Aß pathology and neuroinflammation, because wild-type mice receiving the same treatment were unaffected. These results suggest that the selective induction of PGC-1α gene in specific areas of the brain is effective in targeting AD-related neurodegeneration and holds potential as therapeutic intervention for this disease.


Assuntos
Doença de Alzheimer/genética , Secretases da Proteína Precursora do Amiloide/genética , Ácido Aspártico Endopeptidases/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Agregação Patológica de Proteínas/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/metabolismo , Animais , Regulação da Expressão Gênica/genética , Vetores Genéticos/uso terapêutico , Humanos , Lentivirus/genética , Memória/fisiologia , Camundongos Transgênicos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/administração & dosagem , Agregação Patológica de Proteínas/terapia , Células Piramidais/metabolismo , Células Piramidais/patologia
6.
Neurobiol Aging ; 36(2): 821-31, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25457554

RESUMO

There is an emerging evidence that growth factors may have a potential beneficial use in the treatment of Alzheimer's disease (AD) because of their neuroprotective properties and effects on neuronal proliferation. Basic fibroblast growth factor or fibroblast growth factor-2 (FGF2) is an anti-inflammatory, angiogenic, and neurotrophic factor that is expressed in many cell types, including neurons and glial cells. Here, we explored whether subcutaneous administration of FGF2 could have therapeutic effects in the APP 23 transgenic mouse, a model of amyloid pathology. FGF2 treatment attenuated spatial memory deficits, reduced amyloid-ß (Aß) and tau pathologies, decreased inducible nitric oxide synthase expression, and increased the number of astrocytes in the dentate gyrus in APP 23 mice compared with the vehicle-treated controls. The decrease in Aß deposition was associated with a reduction in the expression of BACE1, the main enzyme responsible for Aß generation. These results were confirmed in a neuroblastoma cell line, which demonstrated that incubation with FGF2 regulates BACE1 transcription. In addition, and in contrast with what has been previously published, the levels of FGF2 were reduced in postmortem brains from AD patients compared with controls. These data, therefore, suggest that systemic administration of FGF2 could have a potential therapeutic application in AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Peptídeos beta-Amiloides/metabolismo , Ácido Aspártico Endopeptidases/genética , Fator 2 de Crescimento de Fibroblastos/administração & dosagem , Expressão Gênica/efeitos dos fármacos , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular , Modelos Animais de Doenças , Feminino , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Humanos , Injeções Subcutâneas , Masculino , Camundongos Transgênicos , Transcrição Gênica/efeitos dos fármacos , Proteínas tau/metabolismo
7.
Biochem Soc Trans ; 42(5): 1316-20, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25233409

RESUMO

Astrocytes were historically classified as supporting cells; however, it is becoming increasingly clear that they actively contribute to neuronal functioning under normal and pathological conditions. As interest in the contribution of neuroinflammation to Alzheimer's disease (AD) progression has grown, manipulating glial cells has become an attractive target for future therapies. Astrocytes have largely been under-represented in studies that assess the role of glia in these processes, despite substantial evidence of astrogliosis in AD. The actual role of astrocytes in AD remains elusive, as they seem to adopt different functions dependent on disease progression and the extent of accompanying parenchymal inflammation. Astrocytes may contribute to the clearance of amyloid ß-peptide (Aß) and restrict the spread of inflammation in the brain. Conversely, they may contribute to neurodegeneration in AD by releasing neurotoxins and neglecting crucial metabolic roles. The present review summarizes current evidence on the multi-faceted functions of astrocytes in AD, highlighting the significant scope available for future therapeutic targets.


Assuntos
Doença de Alzheimer/metabolismo , Astrócitos/metabolismo , Gliose/etiologia , Doença de Alzheimer/imunologia , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/metabolismo , Animais , Astrócitos/imunologia , Astrócitos/patologia , Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Humanos , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal , Proteólise
8.
J Neuroinflammation ; 11: 25, 2014 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-24490742

RESUMO

Over the past decade the process of inflammation has been a focus of increasing interest in the Alzheimer's disease (AD) field, not only for its potential role in neuronal degeneration but also as a promising therapeutic target. However, recent research in this field has provided divergent outcomes, largely due to the use of different models and different stages of the disease when the investigations have been carried out. It is now accepted that microglia, and possibly astrocytes, change their activation phenotype during ageing and the stage of the disease, and therefore these are important factors to have in mind to define the function of different inflammatory components as well as potential therapies. Modulating inflammation using animal models of AD has offered the possibility to investigate inflammatory components individually and manipulate inflammatory genes in amyloid precursor protein and tau transgenics independently. This has also offered some hints on the mechanisms by which these factors may affect AD pathology. In this review we examine the different transgenic approaches and treatments that have been reported to modulate inflammation using animal models of AD. These studies have provided evidence that enhancing inflammation is linked with increases in amyloid-beta (Aß) generation, Aß aggregation and tau phosphorylation. However, the alterations on tau phosphorylation can be independent of changes in Aß levels by these inflammatory mediators.


Assuntos
Doença de Alzheimer/complicações , Doença de Alzheimer/genética , Modelos Animais de Doenças , Encefalite/etiologia , Animais , Animais Geneticamente Modificados , Encefalite/genética , Humanos
9.
Neuropharmacology ; 75: 255-61, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23932816

RESUMO

Nerve Growth Factor (NGF) plays pivotal roles in neuronal survival in the adult mammalian brain and may modulate forms of structural and functional plasticity, including neurogenesis. We have shown previously that six weeks of housing in an enriched environment (EE) that did not include access to running wheels resulted in improved recognition memory concomitant with increased NGF expression and neurogenesis in the hippocampus. Here we have attempted to probe a causal link between NGF and the observed enrichment-induced changes in hippocampal function by assessing the effects of six weeks continuous intracerebroventricular (i.c.v.) infusion of NGF on recognition memory and cell proliferation. We report that NGF-infused rats show enhanced recognition memory when compared with vehicle-treated controls. Expression of NGF and its receptor, TrkA, was increased in treated rats, as was expression of the synaptic vesicle protein, synapsin. Finally, we observed an increase in cell proliferation in the dentate gyrus of NGF-treated rats. These data indicate that chronic infusion of NGF can stimulate an improvement in learning and memory that is associated with specific cellular changes in the hippocampus, including synaptogenesis and cell proliferation.


Assuntos
Fator de Crescimento Neural/farmacologia , Reconhecimento Psicológico/efeitos dos fármacos , Animais , Esquema de Medicação , Sistemas de Liberação de Medicamentos , Comportamento Exploratório/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Injeções Intraventriculares , Masculino , Fator de Crescimento Neural/genética , Fator de Crescimento Neural/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptor trkA/genética , Receptor trkA/metabolismo , Sinapsinas/genética , Sinapsinas/metabolismo , Sinaptofisina/metabolismo , Fatores de Tempo
10.
Hippocampus ; 23(6): 437-50, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23460346

RESUMO

Environmental manipulations can enhance neuroplasticity in the brain, with enrichment-induced cognitive improvements being linked to increased expression of growth factors, such as neurotrophins, and enhanced hippocampal neurogenesis. There is, however, a great deal of variation in environmental enrichment protocols used in the literature, making it difficult to assess the role of particular aspects of enrichment upon memory and the underlying associated mechanisms. This study sought to evaluate the efficacy of environmental enrichment, in the absence of exercise, as a cognitive enhancer and assess the role of Nerve Growth Factor (NGF), neurogenesis and synaptogenesis in this process. We report that rats housed in an enriched environment for 3 and 6 weeks (wk) displayed improved recognition memory, while rats enriched for 6 wk also displayed improved spatial and working memory. Neurochemical analyses revealed significant increases in NGF concentration and subgranular progenitor cell survival (as measured by BrdU+ nuclei) in the dentate gyrus of rats enriched for 6 wk, suggesting that these cellular changes may mediate the enrichment-induced memory improvements. Further analysis revealed a significant positive correlation between recognition task performance and BrdU+ nuclei. In addition, rats enriched for 6 wk showed a significant increase in expression of synaptophysin and synapsin I in the dentate gyrus, indicating that environmental enrichment can increase synaptogenesis. These data indicate a time-dependent cognitive-enhancing effect of environmental enrichment that is independent of physical activity. These data also support a role for increased concentration of NGF in dentate gyrus, synaptogenesis, and neurogenesis in mediating this effect.


Assuntos
Giro Denteado/fisiologia , Meio Ambiente , Memória/fisiologia , Fator de Crescimento Neural/biossíntese , Condicionamento Físico Animal , Sinapses/fisiologia , Animais , Sobrevivência Celular/fisiologia , Giro Denteado/citologia , Masculino , Neurogênese/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Ratos , Ratos Wistar , Fatores de Tempo
11.
Hippocampus ; 19(10): 973-80, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19437410

RESUMO

Short periods of forced exercise have been reported to selectively induce enhancements in hippocampal-dependent cognitive function, possibly via brain-derived neurotrophic factor (BDNF)-mediated mechanisms. In this study, we report that 1 week of treadmill running significantly enhanced both object displacement (spatial) and object substitution (nonspatial) learning. These behavioral changes were accompanied by increased expression of BDNF protein in the dentate gyrus, hippocampus, and perirhinal cortex. The effects of exercise on object substitution were mimicked by intracerebroventricular injection of BDNF protein. These data are consistent with the hypothesis that exercise has the potential to enhance cognitive function in young healthy rats, possibly via a mechanism involving increased BDNF expression in specific brain regions.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipocampo/fisiologia , Aprendizagem/fisiologia , Condicionamento Físico Animal/fisiologia , Corrida/fisiologia , Percepção Espacial/fisiologia , Análise de Variância , Animais , Giro Denteado/fisiologia , Ensaio de Imunoadsorção Enzimática , Masculino , Testes Neuropsicológicos , Ratos , Ratos Wistar , Reconhecimento Psicológico/fisiologia , Lobo Temporal/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...